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SPECTRUM OF TURBULENCE IN A CONTRACTING STREAM 

By H. S. Ribner and Mo Tucker 

SUMMARY 

The spectrum concept is employed to study the selective effect of 
a stream, contraction on the longitudinal and lateral turbulent velocity 
fluctuations of the stream. By a consideration of the effect of the 
stream contraction on a single plane sinusoidal disturbance wave, 
mathematically not dissimilar to a triply-periodic disturbance treated 
by G. I. Taylor, the effect on the spectrum tensor of the turbulence 
and hence on the correlation tensor are determined. Lack of inter- 
ference betveen waves follows from the postulation of a low level of 
turbulence; this and the assumption of an inviscid fluid imply neglect 
of decay effects. The compressibility of the main stream is taken 
into account, but the density fluctuations associated with the tur- 
bulence is assumed to be negligible; this would be the case if the 
turbulence originated from wakes and boundary layers in the very low 
speed portion of the flow. For an axisymmetric contraction and a 
particular isotropic initial turbulence some explicit results are 
obtained. The one-dimensional longitudinal spectrum is found to be 
distorted (as well as reduced in amplitude) with its peak shifted well 
to the right of the initial position above the zero of the wave-number 
scale. The selective effect of the contraction on the mean square 
longitudinal and lateral components of turbulent velocity is'found to 
be given uniquely when the initial turbulence is isotropic, regardless 
of the details of the spectrum. If the initial spectrum is anisotropic, 
as, for instance, that produced by a damping screen, then the selective 
effect is altered. 

In a crude extension, decay effects outside the scope of the 
theory are allowed for in first approximation. With this extension, 
a comparison with experiment is made of the selective effect on tur- 
bulent intensity where the estimated decay effects are comparable with 
the contraction effects. The agreement is good for the longitudinal 
component, very poor for the lateral component, the experimental data 
themselves being in conflict. 
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INTRODUCTION 

The generation of a wind-tunnel flow is always accompanied by a 
certain amount of turbulence; this is one respect in which, the flow fails 
to simulate free-flight conditions. Measurements in the tunnel, particu- 
larly those sensitive to "boundary-layer behavior, are known to be affected 
by this turbulence. Accordingly, the tunnel designer attempts to reduce 
the intensity to the lowest practicable level. The use of honeycombs and 
damping screens in a large low-speed section (settling chamber) followed 
by a sharp contraction to the much-higher-speed working section is known     S 
to be effective. The honeycombs and screens located in a low-speed w 
section reduce the absolute level of the turbulence with little drag 
penalty; then the relative level is greatly reduced by the large gain 
in tunnel speed through the contraction, aside from any effect of the 
contraction on the absolute level. 

Once the characteristics of honeycombs and screens are known, the 
further quantitative estimate of the reduction in turbulence involves a 
knowledge of the effect of the tunnel contraction-1' on the turbulence. 
It is known that the longitudinal component of the turbulence is greatly 
reduced (in absolute value) by the contraction; the behavior of the 
lateral component appears, on the other hand, to vary from no change to 
a substantial increase. Prandtl (reference l) obtained a quantitative        y 
estimate of the first effect by considering the conservation of energy 
for a perturbed longitudinal filament: if the initial stream speed 
is U, the filament speed U + u, with u<<U, and the final stream speed 
is ZU, then the final filament speed must be 2U + Z~lu; that is, the 
contraction reduces the longitudinal perturbation velocity u by the 
factor 7. For the lateral effect, Prandtl applied conservation of 
momentum to a small rotating cylinder of the fluid, with its axis 
cross stream, as the fluid traversed the tunnel contraction„ He con- 
cluded that the lateral perturbation velocity v is increased by a 
factor f/T. 

Prandtl's considerations on the effect of a stream contraction 
were limited, as has been noted, to particular idealized "eddies". 
G. I. Taylor later (reference 2) attempted more realism by treating a 
mathematically defined model of turbulence which amounted to vortices 
in parallelepiped partitions arranged in a regular three-dimensional 

The considerations of this paper are not limited to a wind-tunnel 
contraction: they may be applied to any stream tube of varying cross 
section large compared with the scale of the turbulence. 
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array. The clianges in vorticity on traversing the contraction were 
determined from a theorem based on conservation of circulation for an 
inviscid fluid; the corresponding altered turbulent velocity pattern 
was then calculated. The final result of the analysis consisted in 
expressions for the root mean square longitudinal and lateral turbulent 
velocity components u1 and v' downstream of the contraction expressed 
as ratios of the corresponding values upstream. 

The initial condition of isotropic turbulence (mean values unaffected 
by rotation or reflection of axes) was approximated by specifying the 
vortex partitions to be cubical. For this case the reduction in the 
longitudinal component u' was found to vary more nearly like 1„5 Z"1 

than the value Z"1 suggested by Prandtl. No explicit result was 
found for the variation of the lateral component, however: the calcu- 
lations contained a free parameter. 

Taylor's results for the longitudinal component agreed fairly well 
with the experimental data then available, but it is now considered that 
the measurements were made too close behind the screens for the screen- 
produced turbulence to have been isotropic. On theoretical grounds, the 
objection to Taylor's theory is threefold: first, the decay processes 
of turbulent mixing and viscous dissipation, which result in a reduction 
of the mean intensity with axial distance in the wind tunnel, are neg- 
lected; second, the assumed model of turbulence fails to exhibit the 
spatial and temporal randomness of actual turbulence; third, no choice 
of the parameters in Taylor's model corresponds to isotropy. In a sense 
all three objections apply likewise to Prandtl*s results: no model was 
employed in his considerations, and hence no distinctions between the 
effects of isotropy and anisotropy were made. 

The second and third objections can be removed by working, not with 
a model of turbulence, but instead with a Fourier integral representation 
of a random turbulent field. The integral represents a superposition of 
plane transverse sinusoidal waves of all wave lengths and with apparently 
random phases and planes of polarization. This aggregate of plane waves 
.constitutes the (three-dimensional) spectrum of the turbulence. Only the 
statistical aspects of this spectrum will be known, not, for example, 
the detailed phase relationships. Mean square velocity components may 
be obtained by an integral of certain spectrum functions in which the 
phase relationships are suppressed; these functions are included in 
the "spectrum tensor" (reference 3)„ 

Taylor's concepts may be applied to find the effect of a stream 
contraction on a single plane wave. The effect under the assumptions 
is linear; therefore the superposition implied by the Fourier integral 
may be employed to obtain the contraction effect on a field of turbu- 
lence. In particular, if the initial spectrum tensor is known the final 
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spectrum tensor is determined; the initial and final mean square velocity 
components then result from quadratures. Indeed, from the same informa-      * 
tion, changes due to the stream contraction in correlations of velocity 
at different points may he calculated: use is made of the fact that the      ^ 
correlation tensor is an inverse Fourier transform of the spectrum 
tensor (reference 3). 

Accordingly, the injection of the spectrum point of view into 
Taylor's original concept of the contraction effect makes possible a 
more realistic calculation of the changes in mean square velocity com-       ex- 
ponents. In addition, it provides much more detailed information con-       w 
cerning changes in the statistical properties of the turbulence; that 
is, it provides the changes in the spectrum tensor and in the correla- 
tion tenBor. 

The ideas just outlined are developed in the present paper. The 
first section is devoted to an account of turbulent spectrum analysis 
in a form specially adapted to the analysis of the contraction effect„ 
In this account, which is a generalization of a development in refer- 
ence 4, the role of the spectrum tensor is subordinated to that of the        „ 
individual Fourier components (plane waves) in contradistinction to 
the customary treatment. This approach has perhaps an auxiliary merit 
in providing some "better physical insight into the significance of the     '  •» 
spectrum tensor. 

Next the effect of a stream contraction on a single plane wave is 
calculated "by an application of Taylor's concepts. The treatment is 
slightly more general in that compressibility of the main stream is 
allowed for. The density fluctuations associated with the turbulence 
are assumed to be negligible; this would be the case if the turbulence 
originated entirely from boundary layers and wakes in the very low 
speed portion of the flow. Following Taylor, the problem is linearized 
by postulating a sufficiently weak turbulence so that the self-distortion 
of the turbulent eddies is small compared with the distortion imposed 
by the contraction of the main stream; this together with the assumption 
of an inviscid fluid implies neglect of the decay of the turbulence. 

In succeeding sections the spectrum and correlation tensors down- 
stream of the contraction are expressed in terms of the corresponding 
initial tensors. For the special case of an axisymmetric contraction 
and isotropic initial turbulence the ratios of the root mean square 
longitudinal and lateral velocity fluctuations downstream and upstream      ' 
are obtained explicitly in terms of the parameters defining the con- 
traction. For a particular subcase where the initial isotropic spectrum 
tensor is specified, the corresponding 'one-dimensional' spectrums .(as 
would be recorded by stationary hot-wire probes) upstream and downstream 
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of the contraction are calculatedj the specification ia such that the 
upstream one-dimensional spectrum corresponds to experiment (refer- 
ence 5) in a number of cases of Isotropie turbulence. 

Most of the calculated contraction effects are amenable to experi- 
mental checks either directly or indirectly. The available experimental 
data, however, are limited to the changes in the root mean square veloc- 
ities. A comparison with these experimental data is given with an esti- 
mated allowance for decay effects outside the scope of the theory» Design 
curves of the changes in the root mean square velocity components neg- 
lecting decay are included for engineering purposes. 

SPECTRUM ANALYSIS 

Representation of turbulence by superposition of plane sinusoidal 
waves. - Suppose q.-^, q.g, q.3 represent the components of velocity in a 

turbulent field; that is, q-|_, q,2> and q.3 vary in an apparently random 

manner in space and time, and the mean values §]_ *= q^? - §3 =0. Sub- 

ject to certain conditions, a snapshot of this field at any instant can 
be represented as a set of three-dimensional Fourier integrals 

i (k-jX-|_+k2X2+1^3X3) 
q.a(Xl, x2, x3) =111    Qa(k1, k2, k3)e dk1dk2dk3, 

where a = 1, 2, or 3 and the significance of k-^, kg, and k3 will be 

brought out later. A continuous representation of the turbulent field 
is obtained by allowing the Qa to vary with time. 

It will be convenient to abbreviate the Fourier integral to 

%i& = I   I  I %.&°~ £dTte) (la) 

and to introduce the companion equation 

-ik*x 
Qa(k) = 8*

0 / / / q.a(x)e ~ ~dT (x) (lb) 
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where k = k-j_, k2, k3; x = Xj_,  x2, x3; dt(x) = dx-]dx2dx3. The second 

equation allows, in principle at least, the coefficients Qa(k) to be 

calculated. Mathematically, q^O*) and Qa(k) are termed three- 

dimensional Fourier transforms of each other; use will "be made of this 
relationship later. 

The velocity components qa are connected by the condition of con- 

tinuity. In many cases of practical interest these turbulent velocities 
originate from boundary layers and the wakes of obstacles in flows of i 
low subsonic speed, so that associated density fluctuations may be 
ignored; this is still permissible when the turbulence so produced is 
transported by a high-speed stream. Thus the incompressible form of 
the continuity equation may be used and the result is 

%kl + ^2k2 + %k3 - ° 

This relation may be written more compactly as 

Z^ccka = (2) 
a 

Physical interpretation. - The amplitude components Qa are com- 

plex in general. According to equation (lb), then, the requirement that 
the velocity components qa be real implies that Qa(-k) Is the complex 

conjugate of Qa(k). If corresponding terms for k and -k in equa- 

tion (la) are paired their sum is thus equal to the real quantity 

2 (Re Qj cos (k-x) - 2(lm Qj sin (k«x) (3) 

The imaginary parts cancel in the pairing, which implies that they con- 
tribute nothing to the integral. Expression (3) represents a pair of 
plane standing waves, a cosine wave and a sine wave, with normals in 
the direction k = (k-j_, kg, k3), where x = (x-j_, x2, x3) is the radius 

vector to any point. The vector k is termed the wave-number vector 
and its magnitude k simply the wave number; the corresponding wave 
length is 2jt divided by the wave number. Since k is perpendicular 
to the wave front, it is sometimes referred to herein as the 'wave 
normal'. 

The continuity condition, equation (2), states that both the real 
part (Re Qa) and the imaginary part (im Qa) of the amplitude vector 

r 
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Q = Qa = (Qj_, ^2}  ^3^ are PerPen<3-icu-lar "to the wave normal -k; that, is, 
"both waves of expression (3) are transverse. For each wave any one of 
the parallel planes containing "both the local velocity vector q. and 
the wave-number vector k (which is perpendicular to Q and hence to 
g)  is called the plane of polarization« The cosine wave (real part) 
and sine wave (imaginary part) may "be polarized in different planes in 
general; the necessary and sufficient condition they be polarized in 
the same plane is that 

Re Qn   Re Qo  Re Q* 
  =  —- =  (A) 
Im Qx  Im Q2  Im Q3 

K*J 

Equations (lb) are now seen to represent a superposition of plane 
sinusoidal waves (Fourier components) with all orientations of the wave- 
fronts (all directions of the wave-normal k) and all wave lengths (all 
wave numbers k). Each wave is transverse, and all planes of polariza- 
tion are permitted» For each value of k there exists a cosine wave 
and a sine wave; their respective amplitudes and planes of polarization 
are different in general. The complex amplitude components Qa(k) 

express, in their real and imaginary parts, how the respective ampli- 
tudes and planes of polarization vary with the wave-front orientation 
and the wave number. 

Mean values; the correlation tensor. - Consider the spatial 
mean value of the product of the velocity component q.a at x and the 

velocity component o,o' at x' = x + r as x varies "but the separation 

r of the two points remains fixed during the averaging process; this 
mean value is called a velocity correlation and is given the symbol 
Rao(r). There are nine such correlations, corresponding to a = 1, 2, 3, 

ß = 1, 2, 3. The form E ß(r) has "been shown to transform like a 

second-order tensor and has been designated (sometimes divided "by qf) 
as the "correlation tensor" (reference 6). 

-'-If the statistical properties of the turbulence are independent of 
position (homogeneous turbulence) and time-independent, an average at a 
given time over all space equals an average at a given point (or pair of 
correlated points) over all time; a proof is given in appendix B. If the 
statistical properties vary slowly with time the space average will still 
approximate a time average over an interval just long enough to smooth 
out the fluctuations. 
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form. raß(kj defined by Batehelor (reference 3) as the Fourier transform 

of IWCr). The form raß(k) ia known as the spectrum tensor. The 

Fourier transform relations connecting the spectrum tensor and the corre- 
lation tensor are summarized as 

raß(l£) - ^3 ///^(£)e^^(r) (6a) 

Baßd) = //Trc^(k)e"%£dT(k) (6b) 

-0» 

By use of the Fourier transform relationship, Batchelor demonstrated 
that raß is a second-order tensor and obtained a number of its proper- 

ties. Thus, for example, raß is complex, in general, with Tßa = r^*, 
and the diagonal elements  I1^ are real; also,  raß(-k) » rßa(k). 

It is of interest to observe that these same properties result immedi- 
3 

ately from the identification of T^, -^- QaQß* with raß. Thus 

QaQß* is complex, in general; QßQa* equals [QaQß*]*; and O^* is, 

of course, real. Furthermore, since Q^-k) = Qa*(k), Qa(-k)Qß*(~k) 

equals Qa*(k)Qß(k); hence ^(-k) = rßa(k). 

The distinction between cases where T aa    is real and cases where 

it is complex may be given a physical interpretation. The product 
QaQß*, and correspondingly Taß, is seen to be real when the condition 

equation (4) is satisfied. This implies that the cosine wave and sine 
wave associated with wave number k are polarized in the same plane. 
The alternative condition where QoQß*; and hence TQR, are complex 

implies polarization of corresponding cosine and sine waves in different 
planes. The velocity pattern of such a pair of waves is quite inter- 
esting:  successive velocity vectors along a line in the direction of 
the wave normal k turn progressively about this line in spiral fashion; 
the tips of the vectors trace out a helical curve on a cylinder of oval 
cross section. 

Energy spectral density. - Each of the diagonal elements T11, 

T22> and T^    of the spectrum tensor Taß may be interpreted as an 

energy spectral density. Thus, according to equation (6b) 

CD 
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Eu(0) = ux
2 =/ / / r11(k)dT(k); therefore 

the differential Trl^dt (k) represents the contribution to the kinetic 

energy component i u-j_2 per unit mass made by waves with wave number 

within the range dT(k)„ 

One-dimensional spectrum. - The elements of the three-dimensional 
spectrum tensor are not directly measurable; they may "be obtained by 
taking the Fourier transform of the measured correlation tensor. A hot- 
wire probe placed in the moving stream will, however, develop a fluctu- 
ating output voltage whose (one-dimensional) frequency spectrum (refer- 
ence 7) is related to a diagonal element of the three-dimensional spec- 
trum tensor. Thus by equation (6b) the contribution to the mean square 

velocity component q_ 2 (s=R (0)) from all waves with wave-number com- 

ponents in the direction of the x-j_-axis between I k-J  and Yk-A   + l^kj 

is 

Fjk^dk^sM   fr^kgdkgjdk! (7) 

the factor of 2 accounting for suppression of.negative values of kn . 

The function Fa(k-j_) is the one-dimensional spectrum corresponding to 

the velocity component q_a; the values a = .1, 2, 3 correspond respec- 

tively to the longitudinal and two lateral spectrums. The particular 
spectrum obtained depends on the arrangement of the hot-wire probe 
elements. 

EFFECT OF STREAM CONTRACTION 

Consider now that the turbulent velocity pattern q.-,, q,„, q_„ is 

carried along by an inviscid general stream with velocity U(x-i) in the 

x-,-direction. Consider also that g,, cu, q» are so small that their 

effect on the streamlines may be neglected as the flow traverses a wind- 
tunnel contraction. The contraction will, however, distort the shape 
of fluid elements.  (See fig. 1.) The vorticity distribution will be 
forced to alter accordingly to conserve the circulation about each 
element. The net result will be an altered_pattern of turbulence» Each 
plane wave (Fourier component) Q-j_, Q2, Q3e _ 2: will, in fact, be 
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altered independently under the linearizing assumption to "be made; the        i 

over-all effect on q,-]_, q.2, I3 can ^e obtained "by the summation expressed 

by equation (l). It thus suffices to consider the effect of the contrac- 
tion on a single representative plane wave» " 

Effect of Contraction on ^Representative Plane Wave 

Telocity and vorticity at upstream station. - Designate by A a       <2 
reference station upstream of the contraction and "by B a reference        *Q 
station downstream of the contraction.  (See fig. 1.) Let a typical 
Fourier component (plane wave) of the turbulent field qa (a m 1,  2,  3) 

at station A "be represented at time t = 0 by 

This wave, equation (8), is supposed to be carried along by the main 
stream with velocity U„ 

The vorticity <»a is obtained from the curl of equation (8) as 
'» 

v-iEW91^ (9) 

0, if any pair of subscripts are equal 
1, if aß/ are in cyclic order 
-1, if aß/ are in anticyclic order 

where e^ = < 

Distortion of a fluid element in passage through contraction. - 
Suppose the contraction is such that the stream velocity U is increased 
by a factor lj_    between stations A and B while the breadth and 

height of the tunnel are reduced by factors Z2 
and  ^3> respectively. 

(See fig. 1(a).) In traveling from A to B an initially cubical 
element of fluid of edge D will be distorted into a parallelepiped of 
edges Ijp,  22D, 23D (see fig. 1(b)); a particle in the element originally 

(t = 0) a vector distance x from a corner particle will finally (t = t) 
be found a distance  £ from the corner particle, where %    is related 
to x by 
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* ?2 = Z2X2 V (10) 

^3 = Z3X3 

M In this argument the modification of the streamlines due to the turbulent 
^ velocity fluctuations has "been neglected. This implies that the relative 

displacement of two adjacent particles due to the superposed turbulent 
motion is small compared with the displacement due to the tunnel contrac- 
tion. This key assumption, due to Taylor (reference 2), linearizes and 
vastly simplifies the problem. The limitations imposed by the assumption 
are discussed later under "Decay Considerations". 

The velocity ratio l^_    and the lateral and vertical contraction 

ratios Zg an(i ^3 are related by the continuity condition 

m 

ol±l2l5  =1 

where a    is the ratio of stream densities at stations B and A; the 
density is considered uniform at each station in accordance with the 
initial assumption of negligible turbulent density fluctuations. 

Vorticity at downstream station. - The vorticity is carried along 
by the flow, the fluid elements undergoing the distortion pictured in 
figure 1(b), to the approximation used. During the motion the strength 
changes in such a way as to maintain the constancy of circulation of the 
fluid elements.  The changes are expressed by the equations for the 
transport of vorticity in the Lagrangian form, due to Cauchy (see 
reference 8), 

S> B = a E ufl
A *2 

ß  ß öxß 

1This statement is exact for the postulated inviscid fluid. The 
modification produced by the diffusive effect of viscosity, in the case 
of a gas, becomes appreciable for the smaller eddies or higher wave 
numbers; for this analysis a criterion for neglect of viscous effects is 

vk2<<|dU/dx|. (See '"Decay Considerations", equation (43).) 
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where a     is "the density ratio between stations B and A; and the deriv- 
atives ö€ /dx„ express the effect of the fluid distortion.1 Evaluation 

GO   p 

by means of the distortion equations (10) yields simply 

or, in expanded form 

~ B        i   - A -\ 

2>iB = °* AA 

2>2B = °1#>2A 

~   B »3 

(11a) 

J 

00 
r- 
to 
CM 

These equations relating downstream and upstream vorticity embody the 
entire dynamics of the contraction effect. The equations are not limited 
to the plane sinusoidal waves discussed earlier, but apply to any (weak) 
vorticity distribution whatsoever. 

The above derivation of the vorticity changes is substantially in 
the form given originally by G. I. Taylor (reference 2) for the case 
a -  1 (incompressible flow). In order to assess the influence of the 
simplifying assumptions a more general derivation based on the Havier- 
Stokes equations is given in the section entitled "Decay Considerations". 

By virtue of equation (9) as applied to (lla) the vorticity at 
station B is obtained explicitly as 

CO 
B 
a ■afify^ 

x    ik«x 
,e  (HD) 

where; it will be remembered, x is the radius vector to a fluid particle 
at time t = 0 when the fluid element is at station A in the moving 
coordinate system of figure 1(b). The corresponding vector to the 
particle at time t = t, when the fluid element is at station B, is £ 
in that figure. When equations (10) are used to express x in terms 
of g, the exponential k«x becomes; in expanded form, 

•"These equations refer to axes moving with some fluid particle 
rather than axes fixed as in reference 8; the form of the equations is 
unaffected. 
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kl^l  k2*2  k3^3 
k«X -  —=  + —r  + —r  

The right-hand side may be expressed as x-g, where 

^ ^ ^3 

defines a new wave-numb er vector. 

Velocity at downstream station, general case. - The velocity dis- 
tribution whose curl in the K-^t %2>  ^3 a7s'tem is given by equation (lib) 

and which satisfies continuity is found to be expressible in the form 

~ B  * B ix-g 
<la = Qa e ~ - (12) 

with 

o B -2 
a 

^A _ V'Wtt 
, 2 2 
lß  x 

(13) 

where x is the magnitude of the wave-number vector x. This result 
is the general solution for the contraction effect on a single plane 
wave. 

Equations (12) and (13) admit of a simple (but not obvious) 
geometrical interpretation: traversal'of the stream contraction alters 
the initial plane wave, equation (8), so that its wave-number vector 

k]_ kg kg 
k = (£•]_, kg, k3) is transformed into x = y, j-f' J~   and its amplitude 
 -a—r K    »  u   A  : 1 % 3.  
vector (QiA,  Qg , Q3 ) is transformed into the projection of 

(Ql^Aij Q2"V^2J %V^5) on a Pi3-116 normal to the new wave-number 
Vector x. 

Velocity at downstream station, axisymmetric contraction. - In 
case the stream contraction is axisymmetric1 a considerable simplifica- 
tion results. The condition for axisymmetry 2g ^ 1$)  with use of the 

continuity equation (2.2), reduces equations (13) to 

A contraction such that all cross sections of the tunnel are 
similar, whence Zg = 1$,  is termed axisymmetric;  the sections need.not 

be circular. 
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Q- 
B 

~ A 
+ V + k3 

*1 et,2 + k?2 + k, 
^ 

~ "R   1 

~  B   1 

~ A Q^k^l-e) 

ekn + kc> + k* 

A   Qi^sd-6) 
*3 +   ek 2 + k 2 + k, 2 3 _1 

(14) 

J 

where e E 2g
2/z 2. 

The considerably greater complexity of equation (13) ia perhaps obscured 
by the purposely expanded form of equation (14). 

If the initial wave normal k is perpendicular to the (longitudinal) 
x^-axis, the component k-j_ vanishes and equations (14) reduce further to 

Q- B 

B 

%AAi 

V3 = QeAA2 

B 

(15) 

V = %A/^2 

The same equations result when Q-j.  may be neglected in comparison with 

Q2  and % , that is, when the amplitude vector is substantially normal 

to the x-j_-axis. Equations (15) state that an axisymmetric contraction 

defined by l^_,   Zg alters these waves by a factor of y- 

in the longitudinal velocity component and a factor of y- in the lateral 

velocity components. These equations apply only to particular types of 
waves; yet when the contraction effect is later integrated over the random 
aggregation of waves representing Isotropie turbulence the over-all 
results are found not to differ greatly from the simple factors 

— and •=—.  respectively. 
h. ]z  

The same factors were obtained by Prandtl (reference l) for other 

special disturbances: the factor -=- from energy considerations for 
l1 

00 

IM 
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purely longitudinal disturbance velocities, and the factor — from momen- 
l2 

turn considerations for a rotating cylindrical element of fluid with axis 
normal to the stream. 

Effect of Contraction on Spectrum and Correlation Tensors 

Effect of contraction on correlation tensor. - The analysis herein 
leads first to the changes in the spectrum tensor raaA(k)-" raßB(x)'- 

Then the corresponding changes in the correlation tensor may "be 
obtained from the Fourier transform relationship, equation (6b): 

« 

(16a) 

00 

Vfe) -Jj^VfeJe^'^Cx) (16b) 
-00 

In succeeding paragraphs raß
B(x) will be determined in terms of the 

initial spectrum tensor Taß
A(k) for various cases. 

Spectrum tensors at upstream and downstream stations in terms of 
the Qq,. - In an earlier discussion the Jourier coefficients Q^ were 

chosen so as to define a field of turbulence confined to a large 
parallelepiped of volume f, and vanishing everywhere outside; for this 

°ase x_^ —^- QaQß* was to be identified with the correlation tensor 
raß' For station A upstream of the contraction it will be convenient 

to specialize this parallelepiped to a cube of edge D. Such a cube 
will, however, be distorted into a parallelepiped of edges ^D, Z2D, 

23D by the stream contraction by the time it reaches station B down- 

stream.  (See fig. 1(b).) The spectrum tensors for stations A and 
B, respectively, are therefore 

_ A /, \  Lim 8it3  A, , B*, -> 
raß

A(k) = ^„^- Qa
A(k)Qa

B (k) 

r  rP(v)   - Lim 8jt5       n B,   x»  B*,   x 

ili2z3I) 

(17) 



18 NACA TN 2606 

Evaluation of spectrum, tensor at downstream station, general caae. - 
The identifications made in the last paragraph allow the spectrum tensor 
to he evaluated at station B in terms of the spectrum tensor at 
station A and the parameters l-^,   Ig, 1$    defining the stream contrac- 

tion between stations A and B. For a single plane wave qa
A== Qa

Ae ——, 

which is transformed by the contraction into q^  = Q^e —**, equa- 

tions (13) give 

~  B      1 
Q      = — *a 

a 
Oaf A -E 

In the Fourier integral    qa     is to be interpreted as    dq^ , q^    as 

dq^3,  Q^    as    Qa
AdT(k), and    Qa

B    as    O^d^x).    Accordingly 

_ B       Jl*223 
^cc    = —r  

"a «a 
A_   )       % kßka 

,  2 2 2ß x 
(18) 

since    ^Zg^ = dT(k)/dx(x).    Thus 

CO 

Bn B*      H lZ  25 AQ A*       >^ /oo^QyA*lcyfcp      Qß^Qy^ykq     Qy
AQ5A*kyk5kqkß 

ß  " ^ \   V2*2   '    V2*2  +     * A2*4 > 

The corresponding relation between the post-contraction and precontrac- 
tion spectrum tensors is, by virtue of equations (17), 

(19) 

raßB(*) 
Z1Z2Z5 

aß ^ (k) £ Ta7A(k)kykß      ryßA(k)kyka     ry5A(k)kykskakß 
,22 ,   2^2       T ,2,24 

where k is related to x by 

kl> k2> k3 = 21X1' *2X2> 23x3 (2°) 

Special case: axisymmetric contraction but arbitrary initial 
spectrum. - When the contraction is axisymmetric(2? = ]\) >  "th© equation 

of continuity in the form 
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E 9> A (21) 

may be used to simplify equation (19). The result may "be written 

B/ A(k)  + {T«l\ + 
rap OE) 

(ek/ +k2
2
+k3

2)2_ ek-,_2 + k2
2 + k3

2 
(22) 

2 /    2 where the ratio    e =  l2 /l-^ ;  for a large speed gain in the contraction 
e «1. 

Special case: axisymmetric contraction, isotropic initial spectrum. 
A further simplification occurs when the turbulence at station A is 
isotropic« -In that case, the spectrum tensor raRB(x) downstream of 
the contraction can he expressed explicitly to within an unknown multi- 
plicative factor G-(k). This results from the fact (reference 3) that 
raß (^)    mus"b then be an fsotropic second-order tensor; the isotropic 

property together with the continuity condition, equation (21), requires 

Taß (k) to be of the form 

raß
A(k) = G(k)(k25^ - kakß) (23) 

where 

3 aß "G for a = ß 
for a ^ ß 

The right-hand side of equation (22) may be evaluated by means of 
equation (23). The diagonal terms reduce to relatively simple forms: 

rn
B(x) = ^f- G(k) fe--*i2): 

(ek!2 + k2
2 + k3

2l 
(24) 

r22V) l-yl 1L2 
G(k) 

2k 
2,   2 

ikg   (1-e) 

6kl    + k2    + k3 

kx
2k2

2(k2  - k!2)(l-6)2 

(ek,2 + k9^ + k, 2\
2 (25) 
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-n "D 

and r33 (x) is obtained from r22 (*) by replacing k2 ^   k3 and- 

vice versa. The relation, equation (20), between k and x applies 
here. 

One-dimensional longitudinal spectrums. - If the form of the initial 
spectrum tensor raßA(k) is known, the corresponding one-dimensional 

spectrums Fa (k-^) can he calculated, according to the defining equa- 

tion (7) as applied at the upstream station A: co 

FaA = 2JJ raaA(k!,  k2, k3)dk2dk3 (26) 

A particular case of Isotropie turbulence is of special interest 
(reference 4): in equation (23) for ran

A(k) the function G(k) it 

taken to he N(k2 + y2)"3, where N,7 are constants. Then 

r..A =     
N'k' 

li 
fk22 + *52) 

(kx
2 + k2

2 + k3
2 + T2)3 

and after integration 

TT A/v \   _ rtH 
Fl   (V  ~   /.   2 2\ 

(ki + y ) 

This one-dimensional longitudinal spectrum is of the same form as an 
empirical relation obtained in reference 5 for that of Isotropie 
turbulence in the initial period; this agreement is the special virtue 
of the form assumed for G-(k). 

The one-dimensional lateral spectrum functions corresponding to 
the same G-(k) are readily evaluated; they are 

F2
A(kx)  - P3A(k]L) 

Tcu(5k1
2 + y2) 

2(ki2 + 7s) 

The equality of the F2 and the F3 functions results, of course, from 

the isotropy of the turbulence. 

The effect of the stream contraction on these one-dimensional 
3pectrums is found by employing the post-contraction value of raa, 
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B 
that is, the -value T™  appropriate to the downstream station B. 

B ''* 
Since    T^     is a function of the local wave-number vector   x    at 
station   B, the equation corresponding to  (26)  is 

*«   = 2J J raaB(V V Ws 
OB 

which is a  function of x-j_. 

For performing the integration and making later comparisons of 
spectrums it is convenient to transform from x-j_, Xg, X3 to k-j_, ^f 
k$,  where 

x kiA: l - ^1/ *i 

x2 = k2/^2 

x3 = k3/l3 

and to define ^(k-jj =  J^-1 Fa
B, such that 

thus _ 

B 

/v» /v> 
I    F0?(k1)dk1 -J    FaBdxi; 

j*°™-^i F~[$w$r** (27) 

B 
The spectrum tensor elements TQ^  following an axisymmetric contraction 

have "been evaluated in equations (24) and (25). With these values inserted 
and G-(k) specified as before, the integrations of equation (25) are "best 
effected in polar coordinates. The results are expressed most simply in 
terms of a "normalized" longitudinal wave number k-^/7 as incorporated 

in the two parameters 
v 2 

- 1 s = -5- + 1 
7 

ek-,2 - k-!2 

* ? * 

The final result for the one-dimensional longitudinal spectrum following 
an axisymmetric contraction (2g = ^3) is 
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B Fl^kl) = 2nN 
, 2 2,3 
*1 7 t  _ 

3 + 4t + t^ + 
2s  V 

2 + 4s + 2t + at + T)l0ge (ilb) 

(28) 

The corresponding result for the one-dimensional lateral spectrums 
following an axisymmetric contraction is 

(29) 

^>-W-i7^H^-4(1"e)(' 
nN   f(5s-2)t2 -i 2a+t  s+t .        f B \     ,  1-e r6a+5t       (s+t)(3s+t) ,        / l08e(s7tJ    +2rL~T- +  1  l0*>{ 

and for e«l (large speed gain) a simple hut very close approximation 
is 

F^C^)   =      *N 

2lz-y 

1 + 2k1
2//2 

2.2 / rrxz+ 0(e'e ^ 6) 

(l+kl2/72); 

(The corresponding approximation for F B(k ) is not simple enough to 

warrant noting.) The parameters l-^,   Z2 = ^3 
anä e - 292Ai2 are 

related to the initial and final Mach numbers of the main stream "by the 
equations 

I  2 _ K\Z f5  + MA
2\ -N 

W/ \5 + Mg2/ 

2  %/5+V 
1o     = 7T" 

MBVS + MA< 

e - 
^MAV /5 + Mß£ 

^W \ 5 + MA
2/ y 

(30a) 

For incompressible flow (Mg, MA -* 0) these reduce to 

*1 - VUA 

I    -  I  _1/2 

e = l- 

(30b) 

CO 
w 
CD 
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These poat-contraction spectrums, equations (28) and (29), are com- 
pared with the initial spectrums in figures 2 and 3, respectively; the 
comparison is "based on an assumed initial stream Mach number of 0„05 
(station A) followed by an axisymmetric contraction such that the final 
Mach number is 2.0 (station B); the corresponding parameters are 
l±  = 29.8, Z2 = 0.382; e = 0.00016. Consider first the longitudinal 

spectrums, figure 2. Normalizing factors are incorporated such that 
the areas under the two curves, if replotted on a linear scale, would 
"be the same; this normalization serves to differentiate changes in 
shape from changes in amplitude. The figure exhibits a rather striking 
distortion of the spectrum after traversing the stream contraction: 
the peak spectral density is shifted from zero wave number to )s.-Jy = 1.4 

along with a general shift of density to the higher wave numbers. Asso- 
ciated with this change in shape is a reduction in amplitude by the 

factor uB /uA , uA
2 and uB

2 being the respective integrals of the 

spectral density curves. These integrals are evaluated in a later 
section. 

The corresponding comparison for the lateral one-dimensional 
spectrums is made in figure 3. In this case the axisymmetric contrac- 
tion has made very little distortion in the spectrum. There is again 
a change in magnitude (this time an increase) in the ratio 

The changes in magnitude (that is, the changes in area under the 

spectral density curves) correspond to the changes uB
2/uA

2 and 
VB /VA  ^ "tlie mean square components of turbulence and are, at least 

qualitatively, well known. The predicted changes in the shape of the 
spectrum curves are apparently new. 

In the above comparisons both pre-contraction and post-contraction 
spectrums have been expressed in terms of the pre-contraction longi- 
tudinal wave number k-^, whereas the local post-contraction wave number 

is X"L = k^/^l'    Consider, however, a representative longitudinal wave 

which has the form cos k^x at station A and cos x-]_£ at station B. 

If x and £ are identified with the respective distances swept in 
time t by the moving waves over stationary hot-wire probes at 
stations A and B respectively, then k-jx = k^Ugt and JL-X « x-jUgt = 

T~  ^1%^' Th"-13 "t110 (temporal) frequency seen by the hot wire in both 

cases is k-jUA/2jt. The comparison based on k^_ therefore constitutes, 

in effect, a comparison of the time spectrums that would be seen by 
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stationary hot-vire probes,  in contradistinction to the space spectrums 
discussed in the earlier parts of the paper. 

Effect of Contraction on Mean Square Velocity Components 

for Isotropie Turbulence 

The mean square Telocity components of the turbulent field may "be 

identified as the diagonal terms of the correlation tensor Eaß(r) with     pj 

r set equal to zero. Thus 

u2 = Bn(0) 

v2 =E22(0) 

v2 = B33(0) 

where u, v, w have been written for q-,, q2, q3, respectively. The 

evaluation of these means is much less laborious than the evaluation 
of the general correlation tensor. In particular, the evaluation of 

the ratio of the means u-g /uA ,  etc., may be made when the initial 

turbulence is specified to be Isotropie but no further details of its 
spectrum are known. These ratios will be calculated in the following 
paragraphs. 

Evaluations of u2 and v2 at upstream station. - According to 

equation (6) 
00 

%iA(o) - ^2 = JJj ^/(kHTQO 

For isotropic turbulence T aQ    has the form specified in equation (23), 

whence 

V JJjG(k)(k2 - kx2)dx(k) 

where G(k) is an arbitrary function. It is convenient to transform 
to spherical polar coordinates: 
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CD Then 

^\ 
k-j_ = k cos 

kg - k sin 6 cos <p 

kg = k sin 0 sin <p 

df(k) = k2 sin 6  do dq> dk 

H8- k4G(k)dk 

^ 

d<p 

y 

sin30 do 

(31) 

(32) 

For the present purpose the function G(k), which, together with the 
condition of isotropy, defines the turbulence, may be left unspecified; 
the integral involving G-(k) will cancel out in forming the ratio 
UB /UA * -^et "^h"-3 integral have the value H; then 

uA2 = | *H 

By virtue of the assumed isotropy 

2 VA wA- = ^ «H 

Evaluation of ratio of u  at downstream station to u  at 

upstream station. - The mean value ug  is obtained from an integration 
involving the spectrum tensor after the latter has been transformed by 
passage of the flow through the tunnel contraction; according to 
equation (16b) 

»11*(°) - °B = Us- rllB(x)dT(x) 
For the present case, where the spectrum tensor at station A is 

assumed isotropic and the contraction is axisymmetric, the transformed 
tensor V i]_(x) has been determined in equation (24)0 Thus 
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Because of the unspecified function G(k) it is convenient to change 
the variables of integration from the components of x to the components 
of k. In other words, a transformation is made from the "wave-number 
space" of station B to the "wave-number space" of station A. The trans- 
formation follows from the Cartesian relations 

dT(k) = dk1dk2dk3 

dT(x) = dx,dx„dx„ 

dk-j. dk2 dk3 
ll    l2    ^3 

together with Z2 = 23 for an axisymmetric contraction, whence 

(33) 

k4G(k)(k2 - k^JdrCk) 

(ek-j2 + k2
2 + k3

2J 

00 

CO 

Again the polar-coordinate transformation (equation (31)) is made, with 
the result 

UB 

• 2lt Jt 

= -~      P   k4G(k) dk    P    d<p   P sin3e d0 

'0 ~Q JQ    (e cos^e + sin^e) 

The first two integrals occur also in uA
2  (equation (32)), and they 

P 
mi i*>    Ä 

cancel in obtaining the ratio u-g /u^ ; thus 

u- LB sin30 de 

uA J-    v/0 

The final result may "be written 

(e cos2e + sin2e)' 

"B 

UA 
2      42n 

_1    +      2"£„^ tanh"1 -Jl^, x-6 ' (1^72 (34) 

and an asymptotic expansion for small c is 
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UB2  _ 

uA
2 

-     5 

U±
2 

27 

1 + | e + (1 + e)in | + o(e2 in e) 

Equation (34) gives the ratio of the mean square longitudinal 
Telocity fluctuation downstream of an axisymmetric tunnel contraction 
to the corresponding mean square upstream of the contraction; when the 
initial turbulence is isotropic. The contraction is characterized "by 
an increase in the stream speed in the specified ratio 2-. and a 

decrease in the lateral dimensions in the specified ratio 22> 
the 

parameters l1}   Z2, and  e = l-^ ll\      are completely defined "by the 
initial and final Mach numbers of the stream according to equations (30). 

The variation of V"B /"A  with the  sPeed ratio ^ is plotted 
in figure 4 for two examples; in the first the flow is assumed com- 
pressible with a Mach number 0.05 at the start of the contraction; in 
the second the flow is assumed incompressible (MA, Mg-*0). The Mach 

number scale at the bottom applies only to the compressible case, the 
}-]_ scale to both cases. The salient characteristic of the curve is 

the marked reduction in the longitudinal component of turbulence with 
increasing speed ratio 2n. 

Compressibility is seen to have but a secondary effect, which is 
appreciable only at supersonic speeds. Note (equations (30) and (34)) ' 
that with I      as the independent variable, the effect of compressibility 

appears only in the parameter 6. The physical significance of 6 
follows from the definition of Z^ as the speed ratio provided by the 

contraction and Z2
2 as the area ratio of the contraction (in the 

axisymmetric case considered), with e = Zp2/^2. For supersonic final 

speeds it is more proper to speak of a converging-diverging nozzle than 
a contraction, the term "contraction" having been retained herein 
primarily for reasons of past usage. 

The basis of the compressibility effect may be summed up in the 
following way. The influence of an axisymmetric stream contraction 
arises from distortion of the fluid elements, as described by the 
parameters Zx and Z2.  (See fig. 1(b).) These parameters are 

related by the continuity condition aZ^Zg2 - 1> where a    is the 
density ratio. Thus compressibility, in allowing a    to deviate from 
unity, changes the relation between Z-]_ and Z2 somewhat, and con- 
sequently modifies the contraction effect. 
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The graph of equation (34) in figure 4 ia primarily for illustrative 
purposes; a form, more useful for engineering applications is given in 

figure 5. The single curve provides the variation of VUB2/ uA^" with 
both Z]_ and e; l-±_    and e may he determined from the initial and 

final Mach numbers "by means of the simple relation (30a). 

Evaluation of ratio of v^ at downstream station to v^ at 

upstream station. - The value of vB
2 results from an integration 

involving the transformed spectrum tensor, according to equation (l6h) 

EPP
B
(0) = v.2 B 

0O 

CO 

For isotropic initial turbulence and an axisymmetric contraction the 
transformed spectrum tensor Fp^C*) has "been evaluated in equation (25), 

Thus 

lxl2 
G(k) 

2t_2/v2 
kc - ko 

2^^(1-6) k-^k^Qr - k1^)(l-e) 

«V  + k2    + k3 (ekx
2 + k2

2 + k3
2)      _ 

dT(x) 

Again it is convenient to transform from x_3Pace to k-space (equa- 
tions (33)) and to introduce polar coordinates k, (p, and 0 (equa- 
tions (31)). The integrations with respect to k and <p are readily 
disposed of, with the result 

it n 

2«   r am
3e ae - 2«(i-6)   C Sis!L^ 

J_ J      sin^e + 
cos 2e ae 

p- + Jt(l-e)' 

0 0 

/">   aln5e oi 
J     aln2e + 

oos2e de 

where H = 

e cos2e 

k4G(k)dk, as before. Upon carrying out the integration 

and dividing by vA = — jtH there is obtained finally 

VB 

V 2   8V vA     2 L 

2-e     e^1 

1-e " (l_e)3/2 
tanh  -y/1_e (35) 
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For small e this lias the asymptotic expansion 

2 TB 

vA
2  8l2 

2 
[2 + e'+ i e2 In el + 0(e2) 

Equation (35) gives the ratio of the mean square lateral Telocity- 
fluctuation downstream of an axisymmetric tunnel contraction to the 
corresponding mean square upstream of the contraction, where the 
turbulence has "been assumed to he Isotropie. The variation of 

A/
T
B
2
/V with the speed ratio l]_    is plotted in figure 4, which 

^/u^27u/ already contains the graph of /vuB /u^  discussed earlier; again the 

two cases are incompressible flow and compressible flow with an initial 
Mach number of 0.05. For l-^Z-l    and incompressible flow, the lateral 

component of turbulence is seen to increase steadily with l-^}  in 

marked contrast to the decrease exhibited by the longitudinal component, 
The curve (of the lateral component) for compressible flow begins to 
differ sensibly from the curve for incompressible flow for downstream 
Mach numbers above 0.3; above sonic speed compressibility is seen to 
effect a complete reversal of the curve. The over-all effect of com- 
pressibility on the contraction effect is thus much greater for the 
lateral than for the longitudinal component of the turbulence. 

The graph of equation (35) in figure 4 is primarily illustrative; 
a form more useful for engineering applications is given in figure 6. 

The single curve provides the variation of A/^B /YA  with both l^_ 

and e;  Z]_ and e may be determined from the initial and final Mach 

numbers by means of equations (30). 

DECAY C0NSIDEEATI0NS 

Criterions for Negligibly Small Decay 

The basis of the present analysis of the contraction effect is 
embodied in equations (lla) relating the pre-contraction and post- 
contraction vorticity distributions. The simplicity of this result 
and its derivation arises from the neglect of the turbulent decay; by 
decay is meant the viscous dissipation and all the (nonlinear) inter- 
mixing processes of the eddies which together cause the mean turbulent 
intensity to diminish with time. The postulation of an inviscid fluid 
eliminated the viscous dissipation, and the limitation to very weak 
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turbulence eliminated the intermixing processes.  (While there can he 
no dissipation in an inviscid fluid, the intermixing processes ordinarily 
associated with decay will occur.) In order to assess the influence of 
these assumptions equations (lla) will now be derived in a more general       « 
fashion with the Navier-Stokes equations as the starting point. For 
simplicity the fluid is taken to be incompressible, since the major con- 
clusions are unaffected thereby. 

General formulation of changes in vorticity. - By rearrangement and ^ 
cross differentiation to eliminate the pressure term (reference 8, p. 578), [^ 
the Navier-Stokes equations can be transformed into N 

DO>L     öqx«     dq-L«     öqx'    2 

Dt~ = "1 ox7~ + <°2 3£T + "3 o^" 
+ VV <°1 (36) 

and two similar equations, where co = co-^cüg, <&■$    is "the vorticity-and 
£' = iiS 9.21; 0.3* is "t^1® resultant velocity. Wow let £* be the sum 
of a stream velocity U, V, ¥ and a turbulent velocity field 
£. -  I-,* ^2'  %' also, let curl U, V, W = 0, so that co  is just curl £. 

Then equation (36) becomes (in tensor notation) 

Dt- = C°ß 3x7+£üß 3x7 + VVCÜ1 (37^ 
» ^-»l ^ / 

Contraction  Decay 

and there are two similar equations. The first set of terms on the 
right-hand side is identified as the contraction effect, the second 
set as the decay effect. First the decay terms will be neglected in 
an attempt to recover equations (lla); then the neglected decay terms 
will be examined and criterions for their neglect arrived at. 

Neglect of the decay terms. - Equation (37) minus the decay terms, 
reads, in expanded form, 

Do^     ö(U+qx)     ö(U+q3_)     ö(U+qx) 

In this and the earlier equations — is the 'Lagrangian* derivative 

following the fluid motion. Now consider a line segment 8x-j_, ÖXg, 8x3 

following the fluid motion: its Lagrangian derivative can be shown to be 
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Dt 

o(U+qx) 
+ bxc 

ö(U+q.!) 
"5 ix2 

•+ Sx? 
5(u+ai) 

5x1 (39) 

and two similar equations. It can "be seen that a solution of equa- 
tions (38) and (39), together with their companion equations, is given by 

CD 

wl> w2' 'ffl3 ~ 5xl-> 5x2> 8x3 

for all time t; this result is well known. Now complete the neglect of 
the decay terms by omitting the terms in q-^ in equation (38) and corres- 

pondingly in equation (39). By this neglect the turbulent perturbations 
of the flow streamlines have been suppressed: this can be inferred from 
the revised equation (39). If the particles are at station A at a time 
t = 0 and reach station B at time t = t, there results 

C0nB Öx B 

Con 

and two similar equations. But 
5x 

5Xj 
B" 

A 

5x A 
is just 2]__, 

5x< B 

Sx. A 
is %2, 

ÖX3B 

Sx^A 
IS Therefore equations (lla) have been recovered for the 

incompressible case (density ratio a =  l). 

Consideration of inertial decay terms. - In equations (37) to (39) 
the decay terms not involving v are the inertial or intermixing terms, 
These are seen to be nonlinear. The condition for their neglect is 
evidently 

öqi 1 

and two similar conditions between 

(40) 

q2 and Y,  q3 and W, respectively. 

In a contraction like that of a wind tunnel the dominant velocity 

gradients will be -r-,  -v-, -r-, and these will be of the same order of 

absolute magnitude. A sufficient condition to replace (40) is therefore 

^a 
oSc 

« 
3tJ 
ox 

(41) 

that is, all of the turbulent velocity gradients are very much less 
than the axial gradient of the stream velocity. This is essentially the 
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assumption underlying the distortion equations (10), which led directly 
to the vorticity changes (lla) in Taylor's method. 

is 
In statistical terms an approximate inference from equation (41) 

, for isotropic turbulence, 

« oU 

But "by definition of X this may "be written 

CO 

to 
03 

V? « dU (42) 

The 'microscale' X may "be interpreted as a sort of average eddy diameter 
weighted in favor of the smaller eddies« Equation (42) may "be accepted 
as a practical criterion for the neglect of the inertial decay terms, 
equivalent to one of the two assumptions underlying equation (10). The 
other assumption, neglect of viscosity, is considered next. 

Consideration of viscous decay term. - The viscous decay term in 
equation (37) is the term containingvT This term is linear and so will 
affect individual plane waves separately without mutual interference. 
The magnitude of the term may be estimated to a sufficient approximation 
"by considering a wave carried along "by the contracting stream and 
neglecting (for this term only) the distortion of the wave imposed "by 
the contraction. Thus a component of the wave may "be written 

co i = S2 ]_< 
si(k-x - kjUt) 

Then,   if the inertial decay terms of equation  (37) are negligible, the 

equation reads, with 

Doo 

OÜ 

CX2 
= 

du 
oX3 

« 
» 

\ 

1 dU 2 

=  OS 
dU 

1 o7~ + v (ki   + k2   + k3 ' tol 

du 
= Cül\3x7 + vk 
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Accordingly, viscosity may "be neglected for that portion of the spectrum 
r      which satisfies the inequality 

vk2 « 3ff 
(43) 

In the 'initial period' of decay if the inertial decay criterion (42) 
is satisfied the major part of the spectrum will satisfy (43). 

Rough Estimation of Mutual Effects 

of Decay and Contraction 

When the decay effects are not negligible compared with the con- 
traction effects (see criterion developed in the last section) the 
theoretical "basis of the present theory of the contraction effect is 
violated. Because negligible decay is more the exception than the 
rule, there is considerable incentive to attempt to apply the theory - 
outside the valid range "by means of assumptions concerning the simul- 
taneous effects of decay and contraction. 

Suppose, now, the decay and contraction are considered to occur 
alternatively in small steps, starting from Isotropie turbulence. Each 
stream tube is considered to contract stepwise: "between steps there is 
decay without contraction; at each step there is a sudden contraction 
without decay. Let the change in speed ratio per step be dZ-,, the 

reduction in u2 due to decay be  (du2)D, and the reduction in ÜF 

due to contraction be  (du2)c. Express the effect of decay in the 

absence of contraction in the form 

(44) 

where l^    is a function of the time of travel (decay time) t, and 

the effect of contraction in the absence of decay in the form 

(45) 

The corresponding differential forms are 
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du' :Jp  D'Ul) 
-Ö = D(TO d2- 

u 

(46) 

(47) 

u 

The assumption is now made that equation (46) applies to the decay effect 
per step and equation (47) to the contraction effect per step, the only 

interaction "being in the common u^.  The total effect per step is then 

du' dl- 

co 
t— 

whence upon integration the over-all effect is 

^B 

"A 

C^) D(ZX) (48) 

That is, if the effect of contraction alone is expressed hy 0(1^) 

(equation (45)) and the effect of decay alone "by D(^)  (equation (44)), 

then the joint effect under the assumption is expressed hy the 
product cUi) DUi)« 

Equation (48) is intended to provide a very rough adjustment of 
the theoretical contraction effect C(Z]_) to account for decay. This 

1 du     ? 
It is known that in the 'initial* period of decay z=r  ~ - u dt. 

Mr 

Equation (46) amounts to replacing the -u2 on the right-hand side hy 

-(u2)dec  only' some defense "^y t,e made of this approximation, con- 

sidering the progressive deviation from isotropy. 
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adjustment will "be made in the attempt to compare the theory with experi- 
mental results in which the decay effects are of the same order as the 
contraction effects. 

Equation (48) refers to the longitudinal velocity component u; an 
equation of the same form is obtained for the lateral component v. For 
toth cases the function D(21) is taken to "be the right-hand side of 

the.empirical decay law (reference 9) 

1__  = D(li) (49) 

2 

1-+ 0.58 V-^~ t(Z-,) LA 

for isotropic turbulence in the initial period. The decay time t(l-,) 

in the formula is the time required by a particle of the main stream to 
pass through the contraction, the initial velocity being U« and the 

final velocity IjU^ 

COMPARISON WITH EXPERIMENT 

There appear to have been no experimental investigations with which 
to compare the predicted changes imposed by a stream contraction on the 
spectrum of the turbulence, or on the correlation tensor of the tur- 
bulence. The available experimental data seem to be limited to measure- 
ments bearing on the changes in the root mean square velocity components. 
These data apply, moreover, to conditions outside the proper scope of 
the present theory in that large decay effects are present. The experi- 
mental data are therefore compared with a crude extension of the theory 
in which the decay is allowed for in first approximation.  (See pre- 
ceding section.) 

The most extensive data are those of MacPhail, (reference 10) which 
in effect cover a range of contraction ratios from l^  <= 1 to ii = 9.65 

inasmuch as measurements were made at various stations along the con- 
traction. Isolated points for particular contraction ratios were 
obtained from investigations made for other purposes by Uryden and 
Schubauer (reference ll) and ~bj  Hall (reference 12).  Only those points 
were chosen for which the initial turbulence was indicated to be approx- 
imately isotropic. In the case of reference 11, data for the case of 
screens in the settling chamber were excluded because the final tur- 
bulence level was sensibly indistinguishable from the residual" noise 
level. 
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In table I are listed, for the three experimental arrangements, the 
parameters used in the estimation of the decay factor (equations (48) 
and (49)). In reference 10 the initial stream Telocity TJA and integral 

scale of turbulence LA were given. In reference 11 the value of UA 
was given, and the value of 1A was taken to be 0.05 feet, the only 

scale mentioned; it was not clear, however, whether this value of scale 
applied with or without screens. In reference 12 the value of UA was 

inferred from collateral information and is somewhat uncertain; the £2 
scale LA was estimated from the dimensions of the honeycomb. In all      £3 

three experimental arrangements the initial relative levels of turbulence 
were specified. The decay time t of the turbulence was computed as the 
time for a particle to traverse the contraction; the value arrived at 
for Hall's data (reference 12) reflects the uncertainty in the 
assumed UA. 

Root mean square longitudinal velocity components. - The comparison 
of the theory, including estimated decay, with experiment for the longi- 
tudinal component of turbulence is given in figure 7. The theoretical 
curve, in each instance, is the product of a value computed for con- 
traction alone, neglecting decay, (obtainable from fig. 5) and a 
value estimated for decay alone neglecting contraction.  (See eq.ua-' 
tions (48) and (49).) The agreement with MacPhail's data and with 
Hall's single point can be considered good. The agreement with the 
Dryden-Schubauer point, on the other hand, is poor; a slight improve- 
ment would result on correction for the spurious contribution of the 
noise background. 

Root mean square lateral velocity components. - Comparison of the 
theory, again including estimated decay, with experiment for the 
lateral component of turbulence is given in figure 8. There is com- 
plete disagreement with MacPhail's data and Hall's single point, and 
on the other hand, good agreement with the Dryden-Schubauer single 
point. Thus there is the curious result that MacPhail's and Hall's 
data agree well with theory for the longitudinal component and disagree 
entirely for the lateral component, whereas the converse is true for 
the Dryden-Schubauer data. 

Discussion. - The uncertainty both in the manner of estimating the 
decay effect and in the data (table I) on which the estimate was based 
is still far from sufficient to account for the discrepancies between 
theory and experiment for the lateral component of turbulence. The 
very large amplification found by MacPhail is particularly hard to 
explain. On the other hand, the experimental data of the several 
observers show considerable disagreement, especially when differences 
in decay are allowed for. This disagreement would tend to cast doubt 
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on the validity of some of the data; the disagreement may also "be in 
part a consequence, predicted "by the theory, of possible differences 
of the initial spectrums from each other and from iaotropy. 

CONCLUDING EEMAEKB 

The original aim of this paper was to provide a quantitative 
explanation of the observed changes in the root mean square velocity 
components of the turbulence of a wind-tunnel stream after passing 
through the tunnel contraction. The simplifying assumption of negligible 
decay was made to make the analysis tractable, although the decay and 
contraction effects are ordinarily comparable. The analysis on this 
basis disclosed, in addition to the above integrated effects, pronounced 
changes in the spectrum of the turbulence. The changes in the shape of 
the spectral density curves, as distinguished from over-all changes in 
amplitude, would appear to be considerably less sensitive to modifica- 
tion by decay than would the mean square velocity components. For.this 
reason, and because such spectral changes have not previously been dis- 
cussed, the emphasis of the present paper has been placed most heavily 
on these spectral effects« 

In particular, it has been found that the one-dimensional longi- 
tudinal spectrum for isotropic turbulence exhibits a rather interesting 
change in shape downstream of the contraction; the center of gravity of 
the curve of spectral density versus longitudinal wave number is shifted 
substantially to higher wave numbers, the resulting distortion moving 
the peak of the curve well to the right of its initial position above 
the origin. The distortion is quite pronounced and would appear to be 
readily amenable to experimental observation. 

The restrictive assumption of negligible decay largely defeats the 
original aim of the paper. Nevertheless, for practical reasons an 
attempt has been made to provide a crude extension to the theory in 
which decay is allowed for in first approximation. With this approxi- 
mation the theory has been compared with experimental values of the 
contraction effect on the longitudinal and lateral component root mean 
square velocity fluctuations. The agreement for the longitudinal 
component is good, whereas there appears to be almost complete disagree- 
ment for the lateral component, the experimental data themselves being 
in conflict. It is perhaps premature to attempt any general conclusion. 
For the present, the theory as augmented by the estimated decay effect 
may be useful in wind-tunnel-design applications. 

It is clear that the tunnel contraction effect on the components 
of turbulent intensity cannot be represented by fixed fractional changes 
independent of the character of the initial turbulence. Instead the 
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Beparate factors for the longitudinal and lateral components depend 
markedly on the spectrum of the turbulence. For initial isotropy, 
however, unique factors are predicted that, when decay is neglected, 
are independent of the details of the spectrum. 

<•' 

Lewis Flight Propulsion laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, August 30, 1951 

CO 
r- 
0J 
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APPENDIX A - SYMBOLS 

The following notation is used in this report: 

The subscripts, 1, 2, 3, refer to a rectangular coordinate system 
with the 1-axis alined with the axis of the main flow and directed down- 
stream, the 2-axis directed horizontally, and the 3-axis vertically» 
Separate systems are used with the origins at stations A and B, respec- 
tively.  (See fig. 1.) Yector and tensor notations are used inter- 
changeably; for example, k « kÄ = (k-^ k2, k3), where a » 1, 2, or 3, 

designates a vector with components k-j_, kg, and k3. 

C(lj) function defined in equation (45) 

D(lj) function defined in equation (44) 

D       edge length of cube within which turbulent field is defined 

e       base of natural logarithms 

Fa =    *1>  F2> OT F3 

F-j_      one-dimensional longitudinal spectral density (see equa- 
tion (7)) 

Fg, F3   one-dimensional lateral spectral densities (see equation (7)) 

G-(k)     function appearing in Isotropie spectrum tensor 

H 
f r * constant! J  k4G-(k) dk 
\^0 

Im      imaginary part of 

i=    V=T 

K-j_, Kg, K3 = k^+k-^', kg+kg1, k34k3', respectively 

k       amplitude of k (= -y/ka2+k22+k32J 

k =     ka = (k-j_, kg, k3) wave number vector (station A) 

L       longitudinal macroscale 
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la= ll>   l2>  Z3 

J-,      stream velocity at station B divided by stream velocity at 
station A (see fig. l) 

12 stream breadth at station B divided "by stream breadth at 
station A (see fig. l) 

13 stream height at station B divided by stream height at co 
station A (see fig. l) 

M      Mach number of main stream 

K       amplitude of special Isotropie spectrum tensor (see following 
equation (26)) 

Q a Qa = (Q-j_, Q2, Q3) disturbance wave amplitude vector 

£ B q.a = (q.-^, q.2; I3) disturbance velocity vector 

Eao(r) correlation tensor (reference 6) 

Ee real part of 

r magnitude of r *= -v/r1
2+r2

2+r32 

r = ra = (r^, r2, T$)    separation vector of two correlated points 

s parameter in equation (28) 

t parameter in equation (28) 

t time 

U main-stream velocity 

u,v,w = q.,,  q.?, q~ disturbance velocity components 

X length of wind tunnel contraction (distance between sta- 
tions A and B) 

x used occasionally in place of x-j_ 

10 
IM 
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x =     x = (x-,,  x«, x3) position vector (station A) 

TaaQt)        spectrum tensor (reference 3) 

7      , constant in special Isotropie spectrum tensor (see following 
equation (26)) (7 = I/L) 

^- 

e       contraction parameter (= 22 Al >  see f:ä-8* -1-) 

w 
CD      CQO     alternating tensor defined after equation (9) 

0 polar angle (equation (31)) 

x      magnitude of x I «= V*i2+*2 +x3 / 

x =     xa = (xl> *2>  ^3) transformed wave number vector (station B); 

1 magnitude of 5 (= -Jn2^2&2  ) 

£ =     ?a = (?]_., €g; €3) transformed position vector (station B) 

(see equation (10) and fig. l("b)) 

/ „     summation over a for a = 1, 2, 3 
a 

o       stream density at station B divided "by stream density at 
station A 

t       a volume 

v       viscosity 

q>       azimuth angle (equation (31)) 

a>a = (co-]_, a>2, 
M3) vorticity vector 

2 = (2,, 29, 2,) vector amplitude of vorticity wave 

03 

2 

Superscripts: 

A       measured in vicinity of station A, upstream of contraction 

B       measured in vicinity of station B, downstream of contraction 

*       complex conjugate 
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Subscripts: 

A       measured in vicinity of station A, upstream of contraction 

B       measured in vicinity of station B, downstream of contraction 

a,ß,y,b      take on values 1, 2, or 3 and designate tensor quantities 

1,2,3    specific values of a, ß, y,  or 5 

A symbol with the mark ~ above it refers to a single plane wave. 
A bar over a symbol designates an average (usually a spatial average); 
a bar under a symbol designates a vector. 

oo 
r- 

03 
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APPENDIX B 

EQUIVALENCE OF SPACE AMD TIME AVERAGES Hf STATISTICALLY STEADY, 

HOMOGENEOUS TURBULENCE 

The definitions of statistical homogeneity and statistical time 
independence will first be made preciseQ    Let F(x,y,z,t) be some 
property of a turbulent field that varies in time and from point to 
point; thus F may be the pressure, or any of the velocity components, 
or a correlation of velocity components at two points of fixed separa- 
tion, (x,y,z) being one of the two points. If, for all choices of the 
property F, (a) the average of F over a time T -*-00 is independent of 
(x,y,z), the turbulence is defined to be statistically homogeneous; if 
(b) the average of F over a volume V-^^is independent of t, the 
turbulence is defined, in the sense used herein, to be statistically 
steady or time-independent. The respective averages are supposed to be 
approached uniformly, in the mathematical sense, as T or V, 
respectively, approach infinity.  (A statistically steady or "stationary" 
condition is defined differently in the theory of random processes.) 

It will now be proved that if the turbulence satisfies the two 
conditions (a) and (b), the time and space averages defined therein are 
equal. In this proof no resort will be made to the "ergodic hypothesis" 
of statistical mechanics, which leads to the equivalence of the time 
average and the "ensemble" average. The'possibility of the joint 
existence of the conditions (a) and (b) probably amounts, however, to 
just as fundamental an assumption. 

The space average will be made over a parallelepiped of edges a, 
b, c and the time average over a time T, and then a limiting process 
will be applied. The average of F over both space and time is thus 

ST r*c pb f>a 

abcT 
PB,t - a,b,c/T^> -±=    I       11       1       F dx dy dz dt (Bl) 

lO'JO <J0 vJO 

Any order of integration is permissible, since the integration 
limits are constants. If the time integration is performed first the 
expression may be written 

f   •+ =        Llm 1 
pc pb p 

M      a,b,c,T—-^r 

00 yJO \J 
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By virtue of the postulated uniform convergence of the time and space 
averages the operation ■£— may "be "brought under the integral sign: rju»oo 

=        _      Lim        1 

Jo 

Pb Pa 

0 JO 

Lim l 
f,o 

Ht    di dy dz 
Lim 1 

(B2) 

Ft dx dy dz 

where F^ is the time average of F. But, "by condition (a), Ft is 

independent of x, y, and z. Therefore 

CO 
r- 
to 

Fs,t = Ft (B3) 

Alternatively, the space integration and limiting process may he 
performed first: 

f      = Llm i 
■T / re 

Lim     _1_ 
a,"b,c-»' at>c 

0 

-"fc pa 

F dx dy dz I dt = 
Lim 1 

Fsdt (B4) 

where Fa is the space average of F. By condition (h), Fs is 

independent of t; therefore, 

F 4. = F 

Equation (B3) and (B5) together state that 

(B5) 

Fs = Ft - Fs,t (B6) 

or the space average, the time average and the space-time average are 
all equal. 
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TABLE I - DATA FOE ESTIMATION OF DECAY 

*1 UA LA t 4^ 
(ft/sec) (ft) (sec) (ft/sec) 

MacPhail (reference 10) 1.20 3.55 0.012 0.19 0.149 
1.60 3.55 .012 .34 
2.55 3.55 .012 .45 
4.90 3.55 .012 .51 
9.65 3.55 .012 .57 

Dryden-Schubauer 6.6 6.86 .05 1.31 .114 
(reference 11) 

Hall (reference 12) 5.2 1.54 .025 1.22 .046 

co 
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(a)   Tunnel  geometry. 
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(b) Stream tube geometry. 

Figure 1.*- Schematic representation of flow contraction parameters. 
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Figure 7. - Comparison of predicted axisymmetric contraction effect with experiment for longi- 
tudinal component of turbulence, with decay allowed for in first approximation.  Initial 
Isotropie turbulence assumed. _rt4 
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